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Introduction

Sentiment

I Sentiment = feelings
I Attitudes
I Emotions
I Opinions

I Subjective impressions, not facts.

I For/against, like/dislike, good/bad, etc.

Sentiment analysis

is contextual mining of text which identifies and extracts subjective
information in source material.
Using NLP, statistics, or machine learning methods to extract,
identify, or otherwise characterize the sentiment content of a text
unit.
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Sentiment Analysis Application

I In the past, an organization or a business conducted surveys,
opition polls and focus groups.

I Helping a business to understand the social sentiment of their
brand, product or service while monitoring online
conversations.

I Governments can easily obtain public opitions about their
policies and measure the pulses of other nations.

I Opinionated documents of internal data: customer feedback,
email, call centers, results of surveys, etc.

I Consumer products [1], healthcare [2], tourism, and financial
services[3] to social events and political elections[4][5].
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Sentiment Analysis Application

Figure: US Election 2016 Figure: SA for customer reviews
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Different Levels of Analysis

Sentiment Analysis research has been mainly carried out at three
levels of granularity:

I Document level
I e.g. given a product review, overall positive or negative.
I Assuming that each document expresses opinions on a single

entity.

I Sentence level
I Aspect level

I discover sentiment on entities and/or their aspects.
I e.g. ”I like the iPhone X”, ”Although the service is not great, I

still love this hotel.”
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Document Sentiment Classification

I Document sentiment classification detects the overall
opinion or sentiment expressed in a document.

I It is perhaps the most extensively studied topic in the field of
SA especially in its early days (see surveys by Pang and Lee,
2008 [6]; Liu, 2012 [7])

I It treat sentiment classification as a traditinal text
classification problem.

I It not concerned the targets of sentiment or opinion.

Assumption

The opinion document d expresses opinions on a single entity e

and contains opinions from a single opinion holder h
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Document Sentiment Classification

I Holds well for online reviews of products or services
(usually focus on single product or serice).

I No meaningful for blog posts, forum discussion
(multiple opinions, multiple entities or compares).
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Document Sentiment Classification

1. Supervised Sentiment Classification

1.1 Using Machine Learning Algorithms
1.2 Using a Custom Score Function

2. Unsupervised Sentiment Classification

2.1 Using Syntactic Patterns and Web Search
2.2 Using Sentiment Lexicons

3. Sentiment Rating Prediction

4. Cross-Domain Sentiment Classification

5. Cross-Language Sentiment Classification

6. Emotion Classification of Documents
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1.1 Classification Using Machine Learning Algorithms

Any existing supervised learning method can be directly applied,
such as Naive Bayes or SVM [8] [9] [10].

Features engineering:

I Terms and their frequency highly effective, TFIDF weighting
can be applied too.

I Part of speech (POS)

I Sentiment words annd phrases e.g. good, wonderful, ... are
positive sentiment words.

I Rules of opinion using other constructs or language
compositions.

I Sentiment shiters expressions that are used to change
sentiment orientations (e.g. ”I don’t like you” is neg, although
the word like is pos.

I Syntactic dependency
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1.2 Classification Using a Custom Score Function

I Customized techniques specifically for sentiment classification
or reviews.

I Example is the score function of Dave et al [11].
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2. Unsupervised Sentiment Classification

Figure: Staano1

1https://www.slideshare.net/Staano/

senticircles-for-contextual-and-conceptual-semantic-sentiment-analysis-of-twitter

https://www.slideshare.net/Staano/senticircles-for-contextual-and-conceptual-semantic-sentiment-analysis-of-twitter
https://www.slideshare.net/Staano/senticircles-for-contextual-and-conceptual-semantic-sentiment-analysis-of-twitter
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2. Unsupervised Sentiment Classification (continue)



16/47

2. Unsupervised Sentiment Classification (continue)

Figure: Augustyniak, Lukasz et al [12]. Simpler is better? Lexicon-based
ensemble sentiment classification beats supervised methods. 2014
IEEE/ACM International Conference on Advances in Social Networks
Analysis and Mining (ASONAM 2014) (2014): 924-929.
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3. Classification Using Rating Prediction

I Using rating score (e.g., 1-5 stars) of reviews
I Pang and Lee, 2005 [13] using SVM regression and SVM

multiclass OVA.
I Long et al. 2010 [14]: Bayesian network classifier
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4. Cross-Domain Sentiment Classification

I Words and even langage constructs used to expressing
opinions in different domains can be quite different.

I Existing research is mainly based on two settings:
I a small amount of labeled training data for the new domain

(Aue and Gamon, 2005 [15]).
I No labeled data for the new domain (Blitzer et al., 2007[16];

Tan et al., 2007[17])
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5. Cross-Language Sentiment Classification

Motivations:

I Apply existing SA (done and good) to another languages.

I Many apps, companies want to know and compare consumer
opinions in different countries.

Some approachs:

I Wan (2008)[18] translate each Chinese review into English
using multiple translators, classify and sums up sentiment
score.

I Wan (2009)[19] using co-training method (SVM) and Wan
(2013)[20] based on co-training idea, using co-regresion
method.

I Boyd-Graber and Resnik (2010)[21] extended SLDA to
MLSLDA.
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6. Emotion Classification of Documents

Emotion Classification of Documents
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Sentence Sentiment Classification - Overview

I Same with document level.

I The goal is to classify positive, negative or neutral*.

I Can be solved either as (1) a three-class classification or as
(2) two separate two-class classification.
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Subjectivity classification

(2) two separate two-class classification:

1. First step: classify whether a sentence expresses an opinion
(subjectivity classification).

2. Second step: classifies those opinion sentences into positive
and negative classes.

Subjectivity Analysis Sentiment Analysis
Positive

Subjective
Negative

Objective Neutral
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Subjectivity classification

Subjectivity classification classifies sentences into two classes,
subjective and objective (Wiebe et al., 1999 [22]).
Most approaches are based on supervised or unsupervised learning:

I Weibe et al. (1999) [22] Naive Bayes

I Yu and Hatzivassiloglou (2003) [23] sentence similarity and
Naive Bayes

I Pang and Lee (2004) [24] mincut-based
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Sentence Sentiment Classification

Supervised learning again can be applied to solve the problem, and
so can lexicon-based methods.

I Dealing with Conditional Sentences

I Dealing with Sarcastic Sentences

I Using Discourse Information for Sentiment Classification

I Emotion Classification of Sentences
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Dealing with Conditional Sentences
Conditional sentences are sentences that describe implications or
hypothetical situations and their consequences.

Example

”If your phone is not good, buy this iPhone”

Narayanan et al. (2009) [25] using a set of linguistic features.
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Dealing with Sarcastic Sentences

Sarcasm is a sophisticated form of speech act in which the speakers
or the writers say or write the opposite of what they mean.

Example

”The Earth is full. Go home.”
”Don’t bother me. I’m living happily ever after.”

I Tsur et al. (2010) [26] uses a small set of labeled sentences
(seeds) and expands through web search.

I Gonzlez-Ibnez (2011) studied in Twitter data to distinguish
sarcastic and nonsarcastic tweets (SVM, LR), they used
unigrams and some dict-based information.
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Discussion

I Sentence-level classifcation only suiable for simple sentences
with a single opinion.

I Cannot deal with opinions in comparative sentences.
I E.g. ”X is better than Y”
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Aspect Sentiment Classification

Aspect Sentiment (or entity-based sentiment analysis).

Example

I ”iPhone is great”
I iPhone is entity, aspect is GENERAL

I ”iPhone’s voice is great”
I iPhone is entity, aspect is voice quality
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Aspect Sentiment Classification

Two tasks:

1. Aspect extraction

2. Aspect sentiment classification
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Aspect Extraction

Example

The sound from this iPhone X phone is great
Girls from A is so beautiful

The entities are iPhone X and A, the aspects are sound and girls.

Approaches

There are four main approaches to extracting explicit aspects:

1. Extraction by finding frequent nouns and noun phrases.

2. Extraction by exploiting syntactic relations:

2.1 Syntactic dependencies depicting opinion and target relations.
2.2 Lexico-syntactic patterns recoding entity and part/attribute

relations.

3. Extracting using supervised learning.

4. Extracting using topic models.
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Aspect Sentiment Classification (ASC)

ASC has two main approaches:

1. The supervised learning approach

2. The unsupervised lexicon-based approach
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1. The supervised learning approach

I Jiang et al. (2011) [27] uses syntactic parse tree to generate a
set of target-dependent features.

I Boiy and Moens (2009) [28] computed the feature weight for
each word feature based on distance(word,

target aspect)
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2. The unsupervised lexicon-based approach

TBD
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