Chatbot: Semantic Parsing and Logical Forms

Van-Duyet LE <me@duyet.net>

Ho Chi Minh, 05/2018

<□ > < @ > < E > < E > E = のQで 1/21

Outline

Logical Forms and Denotations

Chatbot Two Main Components of a Chatbot System

Parsing Utterances

Logical Forms

Learning for Parsing Utterances to Logical Forms

Outline

Logical Forms and Denotations Chatbot

Two Main Components of a Chatbot System

Parsing Utterances

Logical Forms

Learning for Parsing Utterances to Logical Forms

< □ > < @ > < E > < E > E = の < C 3/21

An Example Chatbot

Example

Table: Lunch Ordering

Utterance

- M Hello, can I help you?
- H Yes, I'd like to have some luch
- M Would you like a starter?
- H Yes, I'd like a chicken soup, please
- M Would you like anything to drink?
- H No, thanks

Intent greeting askMenu askStarter chooseStarter askDrink confirmation

An Example Chatbot

Example

Table: Lunch Ordering

Utterance

- M Hello, can I help you?
- H Yes, I'd like to have some luch
- M Would you like a starter?
- H Yes, I'd like a chicken soup, please
- M Would you like anything to drink?
- H No, thanks

Intent greeting askMenu askStarter chooseStarter askDrink confirmation

Every chatbot needs intent detection and entity extraction.

Is Your Bot Intelligent?

 Intent detection and entity extraction are not sufficient to make your chatbots intelligent

Is Your Bot Intelligent?

 Intent detection and entity extraction are not sufficient to make your chatbots intelligent

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □

- They cannot answer questions such as:
 - What is the tallest mountain in Vietnam?
 - What is the capital in Vietnam?
 - What is three plus three plus one?
 - Who is Obama?

Outline

Logical Forms and Denotations Chatbot

Two Main Components of a Chatbot System

Parsing Utterances

Logical Forms

Learning for Parsing Utterances to Logical Forms

< □ > < @ > < E > < E > E = の < € /21

Two Main Components of a Chatbot System

- 1. Al Engine: language understanding & intent detection
- 2. **Dialog Engine**: state machine that executes context-driven workflows with scope variables

Semantic Parsing

A semantic parsing maps natural language utterances into an intermediate logical form, which is executed to produce a denotation.

A simple arithmetic task

- Utterance: "What is three plus four?"
- Logical form: (+ 3 4)
- Denotation: 7

A question answering task

- Utterance: "What is the capital of Vietnam?"
- Logical form: (capital "Vietnam")
- Denotation: "Hanoi"

Semantic Parsing

A travel agent bot

- ▶ Utterance: Show me flights to Hanoi leaving tomorrow
- Logical form: (and (type flight) (destination Hanoi) (departureDate 2018.05.10))

Denotation: (list ...)

Semantic Representations

- Semantic representations are generally logical forms, which are expressions in a fully specified, unambiguous artificial language.
- There are a variety of different formalisms:
 - Iambda calculus
 - natural logics
 - diagrammatic languages
 - programming languages
 - robot controller languages
 - Grammar formalism based schemes:
 - Dependency Formalism
 - Combinatory Categorial Grammar (CCG)
 - Head-Phrase Structure Grammar (HPSG)
 - Lexicalized Tree Adjoining Grammar (LTAG)
 - database query languages
 - knowledge-based query languages (SPARQL, etc.)
 - Iambda dependency-based compositional semantics

Logical Forms

Logical Forms

A **logical form** is a hierarchical expression. Primitive logical forms represent concrete values:

< □ > < @ > < E > < E > E| = のへで 11/21

- (boolean true)
- (number 23)
- (string "Chao buoi sang")
- (fb:en.obama)

Logical Forms

- Logical forms can be constructed recursively by a function name followed by arguments, which are themselves logical forms
 - (call + (number 3) (number 4))
 - (call java.lang.Math.cos (number 0))
 - > (call if (call < (number 3) (number 4)) (string yes) (string no))
 - > (call .indexOf (string "Duyet dep trai") (string "dep"))
- We can execute a logical form and get the denotation (answer):

Parsing Utterances to Logical Forms

- How to map a natural language utterance into a logical form?
- The key framework is compositionality:
 - The meaning of a full sentence is created by combining the meanings of its parts

< □ > < @ > < E > < E > E = のQで 13/21

- Meanings are represented by logical forms.
- Classical and powerful approach: use a formal grammar.

Formal grammar

A grammar is a set of rules which specify how to combine logical forms to build more complex ones in a manner that is guided by the natural language

Example

- (rule \$Expr (\$PHRASE) (NumberFn))
- (rule \$Operator (plus) (ConstantFn (lambda y
 (lambda x (call +(var x)(var y))))))
- (rule \$Operator (times) (ConstantFn (lambda y
 (lambda x (call * (var x)(var y))))))
- (rule \$Partial (OperatorExpr) (JoinFn forward))

Parsing

- Now, the utterance "What is three plus four?" should give the output (number 7)
- A longer sentence such as "What is three plus four times two? should give two derivations:
 - (number 14)
 - (number 11)
- A parser is an actual algorithm that takes the grammar and generates those derivations.
 - INP: What is three plus four?
 - > OUT: (derivation (formula (((lambda y (lambda x (call + (var x) (var y)))) (number 4)) (number 3))) (value (number 7)))

Parsing Utterances to Logical Forms

- A given utterance might be consistent with multiple logical forms, creating ambiguity
- INP: What is three plus four times two?
- ► OUT:
 - 1. (derivation (formula (((lambda y (lambda x (call +
 (var x) (var y)))) (((lambda y (lambda x (call *
 (var x) (var y)))) (number 2)) (number 4)))
 (number 3))) (value (number 11)))
 - 2. (derivation (formula (((lambda y (lambda x (call *
 (var x) (var y)))) (number 2)) (((lambda y (lambda
 x (call + (var x) (var y)))) (number 4)) (number
 3)))) (value (number 14)))

Parsing Utterances to Logical Forms

- Computational challenge: the number of candidate logical forms is in general exponential in the length of the sentence.
- In the question What kind of system of government does the United States have? (Berant et al., 2013):
 - ▶ the phrase "United States" maps to 231 entities in the lexicon,
 - the verb "have" maps to 203 binaries,
 - the phrases "kind", "system", and "government" all map to many different unary and binary predicates.

◆□ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ Ξ = の Q ○ 17/21</p>

Learning

Machine learning concerns the ability to generalize from a set of past observations or experiences in a way that leads to improved performance on a future task (T. Mitchel, 1997).

◆□ → < □ → < Ξ → < Ξ → Ξ = の Q ○ 18/21</p>

- A ML system has 3 integral pieces:
 - 1. a feature representation of the data
 - 2. an objective function
 - 3. an algorithm for **optimizing** the objective function

Using Machine Learning to get Logical Forms

Using Machine Learning for Parsing Utterances to Logical Forms?

<□> <圖> <≧> <≧> <≧> ≤≧> ≤≧< <</p>

Summary

 Many existing chatbot systems have mostly used a swallow semantic representation of text, disregarding significant meaning encoded in human language

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ ■ の Q @ 20/21

 Recent logical and statistical approaches have identified methods for mapping utterances to meanings efficiently.

For Further Reading I

- Jonathan Herzig and Jonathan Berant, "Neural Semantic Parsing over Multiple Knowledge-bases", Proceedings of ACL, 2017
- Jonathan Berant et al., "Semantic Parsing on Freebase from Question-Answer Pairs", Proceedings of EMNLP, 2013.
- Phuong Le-Hong and Duc-Thien Bui, "A Factoid Question Answering System for Vietnamese", Proceedings of WWW Companion, 2018.