
Simple data pipeline 
for ETL and data
aggregation

Lê Văn Duyệt (me [at] duyet.net)
12-09-2018
Trusting Social



Overview

The goal of this document is develop a simple data pipeline for ETL and data aggregation.

Our system main functions:
- Collecting all data.
- Transforming the data (cleaning, formatting, deduplication). 
- Storing in HDFS. 
- Doing data aggregation on daily basis



Overview

The pipeline has 3 main stage:
1. Ingestion
2. Transformation
3. Aggregation



Overview

1. Ingestion stage:
- Load data from FTP server(s) into <Staged> zone
- Which acts as incoming staging areas where raw input data shipped to as well as 

temporary data files reside.
2. Transformation stage:

- This stage is the most complex in the entire data transformation process where schema 
validation is performed, cleaning, deduplication

■ Step 1: Parsing and inferring structure
■ Step 2: Validating data schema against registered schema
■ Step 3: Cleaning, deduplication
■ Step 4: Move data to <Processed> zone

3. Aggregation
- Doing data aggregation based on business model. Move data to <Application> zone.

Logs: For each Stage, the process will always create a log to track which data files/tables/partitions 
have been processed and the status (successful, fail, etc...).



Overview

Trigger execution: 
For some processes, resume and continuation can be automatic for example next day process will 
always from the last day process. Some processes require manual intervention to make decision how 
to proceed/restart.

Zone folder template path:
We will structure data in storage with template path to optimize for processing

/<zone>/y=.../m=.../d=.../<data type>/<prefix>_<partid>.csv

With: <zone> is “staged”, “processed” or “application”; <data type> can be “call_histories”, 
“message_histories”, “top_up_histories”, ...



Technologies used

In this proposal design, I use Amazon Web Services for all implementation.

Amazon Web Services (AWS) is a secure cloud services platform, offering compute power, 
database storage, content delivery and other functionality to help businesses scale and grow.

Photo: https://www.amoebanetworks.com/amazon-web-services.html



Overall Architecture 



Overall Architecture - components (1) 

Main service components:
- AWS Data Pipeline: AWS Data Pipeline is a web service that you can use to automate the 

movement and transformation of data. With AWS Data Pipeline, you can define data-driven 
workflows, so that tasks can be dependent on the successful completion of previous tasks. 

Photo: https://aws.amazon.com/datapipeline/details/

https://aws.amazon.com/datapipeline


Overall Architecture - components (2) 

Main service components:
- AWS EMR: Amazon EMR uses Hadoop processing combined with several AWS products to do 

such tasks as web indexing, data mining, log file analysis, machine learning, scientific simulation, 
and data warehousing.. 

Photo: https://aws.amazon.com/emr/details/

https://aws.amazon.com/emr


Overall Architecture - components (3)

Main service components:
- AWS S3: Amazon S3 is object storage built to store and retrieve any amount of data from 

anywhere. When it comes to Hadoop data storage on the cloud though, the rivalry lies between 
Hadoop Distributed File System (HDFS) and Amazon's Simple Storage Service (S3). Although 
Apache Hadoop traditionally works with HDFS, it can also use S3 since it meets Hadoop's file 
system requirements.

- You can use Amazon S3 as storage option on EMR without configuring anything by just using 
URI scheme s3://

https://aws.amazon.com/s3


Overall Architecture - in detail 

Data flows:

(1) Using CopyActivity of Data Pipeline to schedule copy data from 
FTP server(s) to <Staged> zone in S3. 

We can define a schedule of every day starting at 00:00:00 hours or 
something else, learn more at Schedule section.

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-schedule.html


Overall Architecture - in detail 

Data flows:

(2) EMR Transform using EmrActivity of Data Pipeline, which 
trigger and EMR task for transformation. This stage also lookup 
the SQL Metadata table (from RDS) to retrieve the schema 
definition for each data type.

Metadata table: data_type
type column_name data_type

call_histories FROM_PHONE string

call_histories TO_PHONE string

call_histories .. ...

type config_name config_val

call_histories sep_char ;

call_histories delim ...

call_histories .. ...

Metadata table: config

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-emractivity.html


Overall Architecture - in detail 

Data flows:

(3) EMR Aggregation for each data type using EmrActivity of 
Data Pipeline, which trigger and EMR task for aggerration.

This staged can be run aggregation for multi data type, with the 
same code base but can have different logic transform by input 
parameters.

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-object-emractivity.html


Data flows:

(3) (continue)

With this code flow, it can be flexible enough to add 
new file type in the future easily

Overall Architecture - in detail 



Scalable, HA and fault tolerant

AWS Data Pipeline allows you to take advantage of a variety of features such as scheduling, 
dependency tracking, and error handling.

AWS Data Pipeline helps you easily create complex data processing workloads that are fault 
tolerant, repeatable, and highly available. You don’t have to worry about ensuring resource 
availability, managing inter-task dependencies, retrying transient failures or timeouts in individual 
tasks, or creating a failure notification system. AWS Data Pipeline also allows you to move and 
process data that was previously locked up in on-premises data silos.



The end


